Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

نویسندگان

  • Sanggil Yeom
  • Byung-Seok Kang
  • Jinkyu Lee
  • Hyunseung Choo
چکیده

Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Control and Scheduling For Low SNR Region in the Uplink of Two Cell Networks

In this paper we investigate the sub-channel assignment and power control to maximize the total sum rate in the uplink of two-cell network. It is assumed that there are some sub-channels in each cell which should be allocated among some users. Also, each user is subjected to a power constraint. The underlying problem is a non-convex mixed integer non-linear optimization problem which does not h...

متن کامل

MC-LMAC: A multi-channel MAC protocol for wireless sensor networks

In traditional wireless sensor network (WSN) applications, energy efficiency is considered to be the most important concern whereas utilizing the use of bandwidth and maximizing the throughput are of secondary importance. However, recent applications, such as structural health monitoring, require high amounts of data to be collected at a faster rate. We present a multi-channel MAC protocol, MC-...

متن کامل

On Joint Sub-channel Allocation, Duplexing Mode Selection, and Power Control in Full-Duplex Co-Channel Femtocell Networks

As one of the promising approaches to increase the network capacity, Full-duplex (FD) communications have recently gained a remarkable attention. FD communication enables wireless nodes to simultaneously send and receive data through the same frequency band. Thanks to the recent achievements in the self-interference (SI) cancellation, this type of communication is expected to be potentially uti...

متن کامل

A Schedule-based Multi-channel MAC Protocol for Wireless Sensor Networks

Due to the half-duplex property of the sensor radio and the broadcast nature of wireless medium, limited bandwidth remains a pressing issue for wireless sensor networks (WSNs). The design of multi-channel MAC protocols has attracted the interest of many researchers as a cost effective solution to meet the higher bandwidth demand for the limited bandwidth in WSN. In this paper, we present a sche...

متن کامل

A Recursive Approximation Approach of non-iid Lognormal Random Variables Summation in Cellular Systems

Co-channel interference is a major factor in limiting the capacity and link quality in cellular communications. As the co-channel interference is modeled by lognormal distribution, sum of the co-channel interferences of neighboring cells is represented by the sum of lognormal Random Variables (RVs) which has no closed-form expression. Assuming independent, identically distributed (iid) RVs, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017